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Abstract
Diabetic retinopathy (DR), caused by elevated
blood sugar levels damaging retinal blood
vessels, is a leading cause of blindness among
working-age adults. This project explores the
impact of different preprocessing techniques on
the classification of DR severity using deep
learning and computer vision methods. We
fine-tune three distinct models multiple times,
each with a different preprocessing approach
applied to the same dataset, aiming to identify
the optimal preprocessing technique across all
models. Our findings suggest that while some
preprocessing methods enhance performance for
two models, there is no single preprocessing
method that consistently improves results across
all models tested.

1 Introduction

Diabetic retinopathy (DR) is the leading
cause of blindness among working-age adults. It
occurs when elevated blood sugar levels damage
the blood vessels in the retina, causing them to
swell and leak, which can lead to blurred vision
[3]. By leveraging deep learning and computer
vision techniques, automated DR classification
and lesion localization can improve screening
efficiency, provide explainable Al-driven lesion
detection, reduce subjectivity in diagnosis, and
ultimately improve patient outcomes.

Numerous preprocessing techniques have
been applied to retinal images before training
models for DR classification, but there is still no
clear consensus on the most effective approach.
Our goal was to identify the most effective
preprocessing technique for retinal fundus
images to enhance future diabetic retinopathy
classification models.

2 Related Work

Recent advancements in automated diabetic
retinopathy detection and classification include
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the use of convolutional neural networks
(CNNG), transfer learning, Vision Transformers,
and hybrid models. Additionally, various
preprocessing methods have been developed and
explored to help guide model attention toward
important lesion types such as microaneurysms,
hemorrhages, and exudates.

2.1 Deep Learning Models for DR
Classification

CNNs have become the backbone of DR
classification and detection architectures have
shown significant performance increases, due to
their residual learning framework that both
enables deep network training and mitigates
vanishing gradient issues. Jiwane et al. [6] used
ResNet50 and transfer learning to achieve high
accuracy in DR classification. ResNet has
proved to be a used architecture for DR
classification, as it is able to extract robust
features while maintaining computational
efficiency. EfficientNet and its variants
(EfficientNetBO, etc) are widely used in DR
classification because they are able to train with
fewer parameters and still achieve high
accuracy. Its efficiency would be ideal for
clinical settings which have limited resources
and computational power. DenseNet has also
been used for DR classification tasks due to its
ability to capture fine-grained features in retinal
images.

In a study conducted by Akhtar and Aftab
[5], DenseNet’s accuracy on the APTOS dataset
was competitive with that of other CNNSs,
especially when combined with transfer learning
techniques. Additionally the use of hybrid
models that utilize CNN backbones and
transformers (ViTs), has seen significant
improvements in DR classification accuracy and
efficiency [9]. Hybrid models guide model
attention to smaller, less-noticeable yet critical
lesions.
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2.2 Preprocessing

Some of the preprocessing methods
explored include contrast-limited adaptive
histogram equalization (CLAHE) with a
Gaussian filter [7], histogram equalization with a
median filter [8], CLAHE applied to the green
channel followed by a median filter [4], and
Gaussian subtractive normalization introduced
by Benjamin Graham, the winner of the
EyePACS Kaggle competition [1]. These
methods will be described in more detail in the
Method section.

3 Dataset

For this project, we utilized two publicly
available datasets: the APTOS 2019 Blindness
Detection dataset [2] and the Diabetic
Retinopathy Detection dataset (EyePACS) [1].

The APTOS 2019 dataset consists of 5,590
retinal fundus images labeled across five
severity levels of DR, 0-4 (No DR to
Proliferative DR).. The EyePACS dataset
contains 35,126 images of retinal fundus

with similar severity classifications. These
datasets will serve as the foundation for training
and evaluating our models to assess the
effectiveness of our preprocessing methods.

For our experiments, we combined both
datasets to create a more robust dataset. To
isolate the impact of preprocessing methods, we
balanced the classes by undersampling the
majority class and oversampling the minority
classes. This ensured that any differences in
model performance were not influenced by class
imbalance. As a result, each class contained
5,000 images.

4 Method

To effectively assess whether a particular
preprocessing method outperforms others for
diabetic retinopathy (DR) classification, we
fine-tuned three different pretrained models,
each trained five times using five distinct
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preprocessing techniques. A method that
consistently achieves the best performance
across all models would be a strong candidate
for the most effective approach.

4.1 Models

The three models we tested our
preprocessing methods on were ResNet-50,
EfficientNet, and a hybrid DenseSwin model.

4.1.1 ResNet-50

The first model we trained on was the
ResNet50 CNN backbone that was pre-trained
on ImageNet and fine-tuned for DR
classification. ResNet50 is a 50 layer CNN with
residual connections that allow for robust feature
extraction. The model is structured in stages in
which there is the initial convolutional layer,
max pooling, and four stages of residual blocks.
The final stage includes global average pooling
and a fully connected layer for classification.
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Fig. 4. ResNet50 architecture.

Figure 1: ResNet50 Architecture

4.1.2 EfficientNet

We used EfficientNet pre-trained on
ImageNet, and fine tuned for DR classification
tasks. 224x224 pixels RGB images are accepted
by EfficientNet and move through a series of
bottleneck blocks with squeeze-and-excitation
modules. Next, it is followed by a layer of global
average pooling and a fully connected layer. In
fine-tuning, beginning layers were replaced with
a new fully connected layer to predict the DR
stages.

4.1.3 DenseSwin

The last model we fine-tuned was a hybrid
model combining DenseNet-121 and shifted
window (Swin) transformer.
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Figure 2: DenseNet-121 Architecture

The pretrained DenseNet-121 was used as
the backbone of the model. As shown in Figure
2, the architecture consists of dense blocks
alternating with convolutional and pooling
layers. Within each dense block, every
convolutional layer receives feature maps from
all preceding layers, enabling efficient feature
reuse and improved gradient flow.
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Figure 3: Swin Transformer Architecture

The Swin Transformer was used for
fine-tuning. As illustrated in Figure 3, the input
image is first divided into non-overlapping 4x4
patches, which are then embedded into vectors.
The architecture consists of alternating Swin
Transformer blocks and patch merging layers.
Each Swin Transformer block updates the patch
embeddings using shifted window-based
self-attention and multilayer perceptrons
(MLPs). Patch merging layers progressively
combine 2X2 neighboring patches, building a
hierarchical representation that captures local
features in early layers and global features in
deeper layers.
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Figure 4: Hybrid DenseSwin Architecture

Together, shown in figure 4, these
components form the hybrid DenseSwin
architecture. The input image is first
preprocessed and passed through DenseNet to
extract local feature representations. These
features are then reshaped via an adaptive
average pooling layer to match the input format
required by the Swin Transformer. The
fine-tuned Swin Transformer then processes the
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features, capturing both local and global context
through its hierarchical attention mechanism.
This combination leverages the strength of
DenseNet in capturing fine-grained local
patterns and the Swin Transformer’s ability to
model broader contextual relationships for final
prediction.

4.2 Preprocessing Methods

Each of the preprocessing methods we used
was inspired by the related works described
earlier because their models demonstrated strong
performance. We chose to compare these
methods to determine whether one consistently
outperforms the others across multiple models,
with the goal of providing a way to further
enhance model performance beyond what has
been previously achieved. An example of each
preprocessing method applied to the same image
is shown below in figure 5.

Transformed CLAHE w/ Gaussian Filter

Hist. Equalization w/ Median Filter CLAHE on Green Channel w/ Median Filter Gaussian Subtractive Normalization

Figure 5: Example of all Preprocessing Methods

4.2.1 Regular

Our regular preprocessing is how we
transformed the dataset before any other
preprocessing, serving as the baseline. It
involved resizing the images to 224x224 pixels,
converted to RGB and normalized [0, 1].
Additionally, the training images underwent data
augmentation including horizontal flips,
rotations, and random resized crops; and the
validation images were center cropped.
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4.2.2 CLAHE with Gaussian Filter

The goal of this method is to enhance local
contrast with CLAHE and reduce noise while
preserving edges with gaussian blur. First,
images were converted to grayscale. Gaussian
blur was implemented in a 3x3 kernel and zero
sigma was applied to smooth the image. The
processed images were converted back to RGB
to match the model’s input.

4.2.3 Histogram Equalization with
Median Filter

The goal of this method is to improve local
contrast with CLAHE and reduce noise with a
median filter. The images were converted to
grayscale, and then histogram equalization was
applied to redistribute the pixel intensities. A
3x3 kernel median filter was applied, smoothie
noise but keeping the edges. Finally, the
processed grayscale image was converted back
into RGB to match the model’s

4.2.4 CLAHE on Green Channel with
Median Filter

This method involves several steps. First,
the image undergoes intensity conversion by
selecting the high-contrast green channel and
converting it into a grayscale image. Next, noise
is reduced using a median filter to suppress
isolated noise while preserving edges. Finally,
contrast enhancement is performed using
CLAHE, which provides efficient contrast
enhancement without amplifying noise.

4.2.5 Gaussian Subtractive Normalization

This method first estimates the image’s
radius based on the middle row’s intensity and
resizes the image accordingly. Second, it
subtracts the local average color using a
gaussian blur and enhances contrast with
weighted addition. Last, it applies a circular
mask to preserve the central region and darken
the outer areas.

5 Results
The performance of three deep learning
models (ResNet, EfficientNet, and
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HybridDenseSwin) was evaluated across five
preprocessing techniques for DR classification.
We assessed accuracy, precision, recall, and F1
score summarized in Table 1. Regular
preprocessing with data augmentations such as
crop, flips, and rotations served as the baseline.
The preprocessing technique CLAHE with the
Gaussian filter achieved the highest accuracy for
both EfficientNet (0.6961) and ResNet50
(0.7580).

As for ResNet50’s results, CLAHE with the
Gaussian filter was highest in all metrics.
Gaussian Subtractive Normalization produced
the lowest accuracy despite having the highest
precision.

EfficientNet also performed best in all
metrics, except precision, using CLAHE with
Gaussian Filter. The baseline method had the
highest precision. Histogram Equalization with
Median Filter performed significantly worse
than the other techniques.

The Hybrid DenseSwin model encountered
issues close to the project deadline, preventing it
from being trained on all preprocessing methods.
However, among the methods it was tested on, it
achieved the highest overall performance using
only the regular preprocessing method. When
looking at the other two models results, they
both showed a decline in performance when
trained with histogram equalization combined
with a median filter and with Gaussian
subtractive normalization. Since DenseSwin was
not trained on these specific methods, we cannot
definitively assess its performance under those
conditions. However, given that DenseSwin
appears to respond differently to input images
compared to the other models, it's possible that it
might have handled these preprocessing methods
more effectively.
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Preprocessing Method
Model Metrics CLAHE Histogram CLAHE on Gaussian
Regular w/ Equalization w/ | Green Channel Subtractive
Gaussian | Median Filter w/ Median Normalization
Filter Filter
Accuracy 0.6709 0.7580 0.6767 0.7467 0.6184
Precision 0.7503 0.6729 0.6155 0.7407 0.7567
ResNet-50
Recall 0.6709 0.7580 0.6767 0.7467 0.6184
F1 Score 0.7033 0.7317 0.6344 0.7432 0.6698
Accuracy 0.6762 0.6961 0.4840 0.6780 0.6526
Precision 0.7501 0.7312 0.5480 0.6572 0.7335
EfficientNet

Recall 0.6762 0.6961 0.4840 0.6780 0.6526
F1 Score 0.7036 0.7317 0.5070 0.6611 0.6869

Accuracy 0.7328 0.7068 - 0.6972 -

Hybrid Precision 0.7380 0.7243 - 0.7381 -

DenseSwin
Recall 0.7328 0.7068 - 0.6972 -
F1 Score 0.7336 0.7121 - 0.7144 -
Table 1: Metrics for all Preprocessing Methods using ResNet-50, EfficientNet, and Hybrid DenseSwin.
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Preprocessing Key:

Reg: Regular

C€G: CLAHE + Gaussian Filter

HEM: Histogram Equalization + Median Filter
CGM: CLAHE on Green Channel + Median Filter
GSN: Gaussian Subtractive Normalization

Model Performance Across Preprocessing Methods
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Figure 6: Performance comparison of ResNet-50, EfficientNet, and DenseSwin across five preprocessing techniques.

6 Conclusion

In this study, we evaluated the impact of
five different preprocessing methods on diabetic
retinopathy (DR) classification using three deep
learning models—ResNet-50, EfficientNet, and a
hybrid DenseSwin model. The objective was to
identify the most effective preprocessing
approach for enhancing model performance
across different architectures. Our results
revealed that certain preprocessing methods,
such as CLAHE with Gaussian filter and
CLAHE on the green channel with median filter
improved performance for specific models, there
was no single method that consistently
outperformed others across all models. This
suggests that the effectiveness of preprocessing
techniques is model-dependent, and further
research is needed to refine preprocessing
strategies for optimal DR classification. The
findings highlight the complexity of
preprocessing choices and encourage a more
tailored approach to model training based on
specific architectural strengths.

6.1 Limitations

Due to computational restraints, Hybrid
DenseSwin could not be tested on all 5
techniques (including regular preprocessing).
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